Pages

Saturday, 20 October 2012

Complement


Definition of one’s complement

v The ones' complement of a binary number is defined as the value obtained by inverting all the bits in the binary representation of the number (swapping 0's for 1's and vice-versa).

v In this form, a negative number is the 1’s complement of the corresponding positive number.

v The 1’s complement of a binary number is found by changing all 1s to 0s and all 0s to 1s as shown below:


+2810 = 000111002
-2810 = 111000112 (1’s complement of +25)

Definition of two’s complement
v Two's complement is a mathematical operation on binary numbers, as well as a representation of signed binary numbers based on this operation. The two's complement of an N-bit number is defined as the complement with respect to 2N, in other words the result of subtracting the number from 2N.

v The 2’s complement of a binary number can be obtained by adding 1 to one’s complement:

2’s complement = (1’s complement) + 1

Example:
The negative (-) decimal number conversion is done in next steps .Lets we convert -118.

Step 1: Separate the sign and magnitude number of -1 .If the sign bits is 1, its represent      as  negative sign in the 2s complement conversion.

Step 2: Convert the decimal number to its 7-bits binary equivalent.

  Decimal
   8-bits binary number

   Note

sign
          Magnitude


    118
  0
1110110
Convert to 7-bits binary



0001001
1st complement
Each 0 is changed to 1 and each 1 to 0.


0001010
2nd










Another Example:
Express the decimal number -55 as an 8-bit in the sign-magnitude, 1’s complement, and 2’s complement forms.

SOLUTION:
8-bit number for + 5510 = 001101112

Sign-magnitude form for -5510 = 101101112

Ø  Change the sign bit to a 1 and leave the magnitude bits as they are 1’s complement form for -5510 = 110010002

Ø Take the 1’s complement of +55 by changing all 1’s to 0s and 0s to 1s

2’s complement form for -5510 =

          11001000    1's complement
+                       1                        
           11001001    2's complement

2’s Complement Operations
  • Two Positive Numbers
    1410                              000011102
+  2510          -------->     +    000110012
    3910                               001001112  



Positive Number and Smaller Negative Number
      2910  
   -      1510
             


SOLUTION:
Step 1 : Find the binary numbers for 2910
            2910        =     000111012

Step 2: Find the binary form for -1510 using 2's complement
            -1510      =     111100012
Step 3 : Add the binary numbers

                                             000111012
                                       +   111 100012
                                            1000011102
                                                          |           
                                    |
                                    |
                            Discard carry over


Positive Number and Larger Negative Number
             1210
        -      2510
                                   

Tasks:
1. Find the binary form for 1210
2. Find the binary form for −2510 using 2’s complement
3. Add the binary numbers

Solution:
Step 1 :+122   -------->  000011002
Step 2 : 
             +2510    ------>   000110012
             -2510     ------>  111001102
                                  +             1  
                                    111001112

Step 3 :
           1210                              000011002
     +( -2510)         -------->   +  111001102
                                                                            111100112= -1310

Check the answer using  2's complement

       111100112     -------->        000011002
                                               +               1  
                                                  000011012 = +1310






                           Written by EOH WENG JIAN(B031210151)










1 comments: