Pages

Monday, 22 October 2012


CHAPTER 2:

Floating Point



6 to represent real numbers on computers.

6 reals in scientific notation which represents numbers as a base number and an exponent. The base for the scaling is normally 2, 10 or 16.

} Scientific notation
     ±___.___ x 10__

     –2.34      × 1056       (normalized)

     +0.002    × 10–4     (not normalized)

     +987.02  × 109     (not normalized)


} Scientific notation in binary
     ±1.______2 × 2___

  Example:

1.01012    x  24

-1.100112 x  212

1.00012     x  2-3




A. Floating Point Standard


} Defined by IEEE Std 754

} Developed in response to divergence of representations
     Portability issues for scientific code

} Two representations
     Single precision (32-bit)
     Double precision (64-bit)



B. IEEE Floating-Point Format


Bit
s
Exponent
    Fraction
single(32)
1
8
23
double(64)
1
11
52





} x = (-1)x (1 + Fraction ) x 2(Exponent-Bias)


}S: sign bit (0 Þ positive, 1 Þ negative)


} Normalize significand:
1.0 ≤ |significand| < 2.0


} Exponent: excess representation: actual exponent + Bias
     Ensures exponent is unsigned
     Single: Bias = 127; Double: Bias = 1203





C. Floating-Point Example


} Represent is –45.75


1st: change 45.75 to binary form


         (a)                               (b)
45=32+8+4+1              45/2 = 22 r 1
=25+23+22+20         22/2 = 11 r 0
=1011012                 11/2 = 5 r   1 
                              5/2 = 2 r   1  
                              2/2 = 1 r   0   
                              1/2 = 0 r   1  


 45 = 1011012




            (a)                              (b)
0.75 = 0.5 + 025      0.75 x 2 = 1.5  1
= 2-1 + 2-2        0.5 x 2 = 1.0   1
= 0.112             


        0.75 = 0.112



45.75 = 1011012 + 0.112
= 101101.112



2nd: change the –45.75 to formula below



 x = (-1)x (1 + Fraction ) x 2(Exponent-Bias)


–45.75 = –1 x (101101.112)
      = –1 x 1.01101112 x 25
      = –11 x (1 + 0.01101112) x 25


(the exponent is 5 because the decimal are move to the left hand side with 5 digit places.)

3rd: list out the information


S = 1                          ( negative )
Fraction = 0110111……002

Exponent = 5+ Bias   ( Bias of single = 127)
                         = 5 + 127  
                         = 132
= 100001002

(the exponent must in the base 2)


s
Exponent
              Fraction
1
10000100
0110111……00


Single: 1100001000110111……00




D. Floating-Point Example

} What number is represented by the single-precision float

               010000011011100……00


 1st: list out the information


S = 0
Fraction = 01110…002
Exponent = 100000112
        = 27 + 21 + 20
        = 131


2nd: replace the information into the equation


}x = (-1)x (1 + Fraction ) x 2(Exponent-Bias)


} x = (–1)0× (1 + 0.01112) × 2(131 – 127)
           = (1) × 1.4375 x 24
         =  23




the end ^^
if you have any questions or ideas can contact me 



Prepared    By      :    TEE SONG WEI

Contact Number :       0173403160 
Facebook : Wentson Tee Song Wei

0 comments:

Post a Comment